Abstract

In this study, the primary breakup of a high-speed diesel jet is investigated using a CFD methodology that combines an LES model with a VOF technique for free surface capture. Inner-nozzle turbulence and cavitation are simplified as the sinusoidal radial velocity with a given amplitude and frequency. The ligament and droplet formation process are captured, the liquid jet is disturbed by the radial velocity, and umbrella-shaped crests are created. Meanwhile, ligaments are formed from the edges of crests because of shear stress and surface tension. We investigate the effect on the characteristics of the surface wave and the liquid structure of different disturbance frequencies and amplitudes. The variation in the disturbance amplitude and frequency facilitates the formation of a variety of liquid structures, such as waves, upstream/downstream-directed bells, and droplet chains. Increasing the disturbance frequency reduces the growth rate of the surface waves of the liquid jet. With an increase in disturbance amplitude, the amplitude of surface waves evidently increases. Furthermore, as the disturbance frequency and amplitude increase, the thickness and Weber number of the radial liquid sheet decrease, and this causes the ligament diameter of the primary breakup to become small. Finally, the primary breakup time is investigated, and the time scale of the liquid jet primary breakup decreases as the disturbance amplitude increases, which indicates that an increase in the disturbance amplitude promotes the atomization of a disturbed liquid jet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call