Abstract
Seismic excitation, which results in large horizontal relative displacements, may cause collisions between two adjacent structures due to insufficient separation distance between them. Such collisions, known as earthquake-induced structural pounding, may induce severe damage. In this paper, the case of pounding between two adjacent buildings is studied by the application of single degree-of-freedom structural models. Impact is numerically simulated with the use of a nonlinear viscoelastic model. Special attention is focused on calculating values of impact forces during collisions which have significant influence of pounding-involved response under ground motions. The results of the study indicate that the impact force time history is much dependent on the earthquake excitation analyzed. Moreover, the peak impact forces during collision depend substantially on such parameters as gap size, coefficient of restitution, impact velocity, and stiffness of impact spring element. The nonlinear viscoelastic model of impact force with the considered relation between the damping coefficient and the coefficient of restitution has also been found to be effective in simulating earthquake-induced structural pounding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.