Abstract

In the present work, results of a numerical study carried out using finite volume method, to investigate the fluid flow and heat transfer characteristics of Alumina ( Al2O3 ) nanoparticles in the base fluid (water) in a square cavity under natural convection mode are presented. The Semi Implicit Method for Pressure Linked Equations (SIMPLE) algorithm was used to solve the discretized momentum and energy equations. Constant temperature heat sources of same strength are placed on bottom and left vertical surfaces whereas the right surface was kept cold, while the top surface was maintained as adiabatic. The impact of Rayleigh number (RaN) ( 1000 to 106 ) and nanoparticles volume fraction (Φ = 0 %, 5 %, 10 %, 15 % and 20 %) on fluid and heat flow characteristics were numerically investigated and presented in the form of streamlines, isothermal lines, mid line horizontal and vertical velocity components, local Nusselt number ( Nuloc ) and average Nusselt number ( Nuavg ). The obtained results indicate, for lower RaN ( i.e; 103 ), conduction dominates over convection near heated surfaces and results in lower fluid velocities and poor heat transfer. For higher values of RaN ( RaN = 105 and 106 ) and volume fraction of nanoparticles, there was a significant increase in mid horizontal and vertical velocity components, Nuloc and Nuavg due to increase in convective heat transfer and thermal conductivity of nanofluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call