Abstract

ABSTRACT Granular media, though discontinuous and heterogeneous, exhibit discrete behaviour at the grain scale and continuum behaviour at the macroscopic level. Understanding the correlation between micro-macro-mechanical parameters is crucial. The Discrete Element Method (DEM) effectively bridges this micro-macro-mechanical gap. This study simulates the Direct Shear Test (DST) using DEM software PFC2D on synthetic cemented granular media (CGM) under varying normal loads and strain rates. It examines micromechanical features and correlates them with macroscopic observations, focusing on confinement pressure and strain-rate dependency. Significant volumetric dilation is observed during shearing at low normal loads, which diminishes at higher normal loads. Particle-scale shear mobilization is explored through shear band formation in the sample. Grain-scale contact force distribution is highly heterogeneous throughout the sample. A probability distribution study is carried out to explore the bond breakage effect on the global response, which confirms the bond breakage to be a pressure and strain-dependent phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.