Abstract
In this paper, the performance of silicon carbide (SiC) light-triggered thyristor (LTT) with a p-type NiO emitter region is analyzed through numerical simulation. The conductivity modulation in SiC LTT is significantly enhanced with the help of high injection efficiency of holes in NiO/SiC heterojunction. The injected hole density at the surface of the p− long base is increased by ∼21.2 times and the corresponding specific on-state resistance (Ron,sp) is only 36.7 mΩ cm2, which is reduced by about 29%. Moreover, hole-injection enhancement by NiO/SiC heterojunction also exhibits excellent potential in improving the dynamic characteristics of SiC LTTs. The simulation results indicate that the turn-on time of SiC LTT can be reduced by ∼57.76% when triggered by 1.0 W/cm2 ultraviolet light. Furthermore, energy dissipations of SiC LTT during the turn-on and turn-off processes can be reduced by 91.4% and 21.9%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.