Abstract

A 3-D modeling based on the numerical resolution of fluid flow and heat transfer are utilized to investigate the thermal phenomena during laser laser-cladding processes of BT20 alloy. From this model, it has been found that the shape and size of the molten pool in the work piece are affected by laser cladding parameters such as scanning speed and the incident laser power. The effects of process parameters on the melt pool are quantitatively discussed by numerical analysis. Furthermore, it has been observed that the surface tension temperature coefficient, Marangoni convection, which is sensitive to the active elements in the titanium alloy composition, also affect the pattern of the fluid flow in the molten pool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call