Abstract

A 3-D modeling based on the numerical resolution of fluid flow and heat transfer are utilized to investigate the thermal phenomena during laser laser-cladding processes of BT20 alloy. From this model, it has been found that the shape and size of the molten pool in the work piece are affected by laser cladding parameters such as scanning speed and the incident laser power. The effects of process parameters on the melt pool are quantitatively discussed by numerical analysis. Furthermore, it has been observed that the surface tension temperature coefficient, Marangoni convection, which is sensitive to the active elements in the titanium alloy composition, also affect the pattern of the fluid flow in the molten pool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.