Abstract

Tar production is a key factor hindering the industrialization of biomass gasification technology. Understanding the mechanisms of tar formation can help predict and reduce tar yield. A gasification model was proposed to investigate the effects of oxygen ratio (OR) and temperature on products formation. Its accuracy was validated using experimental data. The relative content of PAHs from corn straw gasification decreased from 95 % to 53 % with OR and temperature increasing, indicating PAHs relative content could be decreased by increasing OR and temperature. The concentrations of phenanthrene from cellulose and corn straw gasification at 900 °C were 0.85 and 378 ppm, separately. The concentrations of pyrene were 52 and 558 ppm, respectively. The content of PAHs from cellulose gasification was much less than that from corn straw gasification. However, the contribution of cellulose to PAHs formation increased with temperature increasing. Furthermore, the mechanism of benzene formation was analyzed qualitatively and quantitatively. C2H2, C3H3, and C4H6 were main precursors and exhibited a considerable role in benzene formation. H, OH, CH3, and C6H5 were the key radicals. The analysis results indicated that CH3→C2H2→C3H3→benzene and C2H3/C2H4→C4H6→n-C4H5→benzene were two main paths for benzene formation during corn straw gasification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call