Abstract

JP-10/air two-phase detonation and rotating detonation engine (RDE) are numerically studied to find out their limits of physical values as a function of equivalence ratio, prevaporization, fuel concentration, droplet diameter, and initial pressure and temperature. To find such limits, the JP-10/air two-step chemical reaction mechanism is used and the Eulerian–Eulerian two-phase governing system is developed to simulate those limits. Especially the JP-10/air two-phase detonation velocity and cell size are investigated in detail and the generation of nonreacted region and quenching mechanism of JP-10/air two-phase RDE are simulated. The findings from those studies are that 1) the JP-10/air two-phase detonation and RDE codes are developed and validated to calculate detonation and RDE; 2) the JP-10/air detonation cell size is calculated by the developed code to show a good agreement with the experimental data; and 3) the JP-10/air RDE simulation shows a detonation quenching at the condition when the droplet diameter is larger than and the prevaporization factor is smaller than 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.