Abstract

This study provides physical insights into a lid-driven square cavity filled with a mixture of a solvent vapor and non-condensable gas, subjected to the vertically parallel thermal and solutal gradients. The top lid is maintained at constant speed while bottom lid and the other two walls are kept fixed. Zero heat and mass fluxes are imposed on the vertical side walls. The transport equations are solved numerically through a pressure-correction-based iterative algorithm (SIMPLE) with the QUICK scheme for convective terms. The diffusivities of heat and salt are assumed to be equal throughout this investigation. The essential details of flow, temperature and concentration fields are presented for the opposing buoyancy forces ratio (B < 0) with special attention being given for the values of parameters for which either the flow inside the cavity is operated by the mechanically induced convection; or the flow structure inside the cavity is akin to a single-diffusive thermal or solutal convection. The variations of average rates of heat and mass transfer are uniform with the Reynolds number, while the variations of these quantities against the solutal Richardson number (RiC) and thermal Richardson number (RiT) point to the existence of the local minimum/maximum. Finally, two linear relations between RiC and RiT at a constant sliding speed are proposed to identify the above points of high and low transport phenomena and justified with the exhibition of the flow structures inside the cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.