Abstract

Tortuosity in coronary artery has been found to be greatly related to the potential sites of stenosis in these last years. Many investigations have been carried out based on the tool of Computational Fluid Dynamics (CFD) mainly focusing on the influences of curved artery in blood flow. Within the limited investigations of coupling between stenosis and tortuosity, the stenosis has been considered to be located at the tortuous segment. However, with recent clinical studies, the case of stenosis occurred at non-tortuous segment before tortuosities has been confirmed which has not been paid enough attention yet. Therefore, the present study aims to investigate the disturbed streamlines and hemodynamics in curved and spiral artery considering symmetrical and asymmetrical stenosis upstream these tortuosities. Different stenosis severities, pulse rates and distances between stenosis and tortuosity as controlling parameters have been studied. The distribution of time averaged wall shear stress (TAWSS) and streamlines through tortuous segment have been displayed in order to determine the potential disease sites. Artery surface of TAWSS below critical value has been quantified as well to evaluate the risks of atherosclerosis. The results reveal that larger artery surface of TAWSS below critical value generally goes with smaller pulse rate, larger stenosis severity and distance between stenosis and tortuosity both for curved and spiral artery. However, exceptions were found in the cases of distance of 6 mm in curved artery with symmetrical stenosis and stenosis severity of 50% in spiral artery. Moreover, the spiral tortuosity tends to suppress the potential risks of atherosclerosis compared to curved tortuosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.