Abstract

Cavitation erosion is an especially destructive and complex phenomenon. To understand its basic mechanism, the fatigue process of materials during cavitation erosion was investigated by numerical simulation technology. The loading spectrum used was generated by a spark-discharged electrode. Initiation crack life and true stress amplitude was used to explain the cavitation failure period and damage mechanism. The computational results indicated that the components of different materials exhibited various fatigue lives under the same external conditions. When the groove depth was extended, the initiation crack life decreased rapidly, while the true stress amplitude was increased simultaneously. This gave an important explanation to the accelerating material loss rate during cavitation erosion. However, when the groove depth was fixed and the length varied, the fatigue life became complex, more fluctuant than that happened in depth. The results also indicate that the fatigue effect of cavitation plays an important role in contributing to the formation and propagation of characteristic pits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.