Abstract

In this paper, effect of CuO nanoparticles in distilled wateron heat dissipation from electronic components is investigated numerically. Computational Fluid Dynamics (CFD) simulations are carried out to study the rectangular and circular cross-sectional shaped heat sinks, and influence of their sectional geometry on the flow and heat transfer characteristics. The three-dimensional governing equations for fluid flow and heat transfer are solved using finite volume method. The two-phase and single-phase models are used to simulate the nanofluid flow. Comparisons of the numerical results with corresponding experimental data show that the two-phase model is more accurate than the single-phase model. Also, effect of various nanoparticle volume fraction on thermal and hydrodynamic characteristics of the heat sink are discussed in details for two different geometry of channel. The results show that the heat sink with nanofluid has better heat transfer rate in comparison with the water-cooled heat sink. A comparison between rectangular and circular channels at the same Reynolds number and cross section area shows that the heat sink with rectangular channels has lower thermal resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call