Abstract

This paper numerically investigates the heat transfer behavior of carbon nanotubes nanofluids under laminar forced flow in horizontal pipe. In order to describe better the nanofluids flow, the thermophysical properties were previously experimentally evaluated considering the influence of nanoparticle content and the effect of non-Newtonian nature of some nanofluids. In an original manner, this study was conceived considering a real experimental set-up with known boundary conditions for simulation validation. The results are presented and discussed for various Re numbers, in a wide range of 500–2000 and it was noticed that the convective heat transfer coefficient of nanofluids is better for low Re number and higher particle loading, while the nanofluid works in non-Newtonian flow. Additionally, an empirical correlation that relates Nu number to Re, Pr and pipe location for all base fluids and nanofluids was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call