Abstract

Fiber-reinforced materials feature transversely isotropic elasticity. Although its influence on pressures, shapes, and sizes has been studied extensively for dry contacts, the transferability to lubricated contacts is fragmented. This numerical study investigates how the content and orientation of short fibers in fiber-reinforced polymers (FRP) affect elastohydrodynamic lubrication (EHL) of point contacts. Material properties are modeled with Tandon-Weng homogenization. For EHL modeling, a fully coupled approach based on finite element discretization is used. Results on hydrodynamic pressure and film thickness as well as material stress distribution are analyzed. It is shown that the combination of fiber content and orientation defines the effective contact stiffness that determines the contact shape, size, and film thickness. The following extended abstract is an excerpt from the publication “Effect of Transversely Isotropic Elasticity on Elastohydrodynamic Lubrication of Point Contacts” (https://doi.org/10.3390/polym14173507) that is based on the awarded thesis “Numerical Study on Anisotropic TEHL Contacts with Short Fiber Reinforced Polymers”)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call