Abstract

Using Monte Carlo simulations, we have studied aging phenomena in three-dimensional Gaussian Ising spin-glass model focusing on quasi-equilibrium behavior of the spin auto-correlation functions. Weak violation of the time translational invariance in the quasi-equilibrium regime is analyzed in terms of effective stiffness for droplet excitations in the presence of domain walls. The simulation results not only in isothermal aging but also in T-shift aging process. T-shift aging processes exhibit the expected scaling behavior with respect to the characteristic length scales associated with droplet excitations and domain walls in spite of the fact that the growth law for these length scales still shows a pre-asymptotic behavior compared with the asymptotic form proposed by the droplet theory. Implications of our simulational results are also discussed in relation to experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call