Abstract

Thermoacoustic devices require heat exchangers with oscillating flow, but there is currently no viable design approach for them. A heat exchanger with a staggered structure can efficiently improve the velocity disturbance and promote heat transfer in steady flow. The flow and heat transfer characteristics of a standing-wave thermoacoustic refrigerator and an ambient heat exchanger with staggered parallel plates under the oscillating flow condition are investigated in this study, primarily focusing on the geometric influences and differences between staggered and non-staggered (continuous) arrangements. The CFD simulation is a mainstream tool for the numerical simulation of complex thermoacoustic phe?nomena. The flow field around the stack and heat exchanger plate is simulated by introducing the dynamic mesh boundary conditions. Through numerical simulation, the flow field characteristics of non-linear vortices generation around the heat exchanger are presented. By changing the staggered column number in the ambient heat exchanger, it is observed that the larger the column number of staggered parallel plates, the more significant the refrigeration effect through the thermoacoustic effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.