Abstract
High thermal stability, a fast switching time, and a low switching current are key characteristics of merit for realizing gigabit-class magnetic random access memory (MRAM). Especially, the switching current needs to be reduced significantly for creating high-density MRAM. In order to realize these necessary features, a number of magnetic tunnel junction (MTJ) structures have been proposed. A previous study of ours led to the proposal of a novel Curie-temperature-controlled hybrid thermo-magnetic structure for MRAM, for the purpose of improving these advantageous properties. This paper presents an analysis of the switching time and switching current by using micromagnetic simulation techniques for comparing our structures with various MTJ structures that have been proposed recently. We confirm that our novel structure can improve the switching characteristics of MRAM. The results of our analysis revealed that a 44% lower switching current and a 32% faster switching time can be achieved compared with the conventional structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.