Abstract

In a numerical study, we investigate the steady-state generation of nonclassical states of light from a coherently driven two-level atom in a one-dimensional waveguide. Specifically, we look for states with a negative Wigner function, since such nonclassical states are a resource for quantum information processing applications, including quantum computing. We find that a waveguide terminated by a mirror at the position of the atom can provide Wigner-negative states, while an infinite waveguide yields strictly positive Wigner functions. Moreover, our investigation reveals a connection between the purity of a quantum state and its Wigner negativity. We also analyze the effects of decoherence on the negativity of a state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call