Abstract

The numerical solution of a kinetic equation for a diatomic gas (nitrogen) is used to study two-dimensional unsteady gas flows in a plane microchannel caused by discontinuous in the initial distributions of macroscopic gas parameters. The plane discontinuity fronts are perpendicular to the walls of the channel. The arising flows are model ones for gas flows in a shock tube and a microchannel. The reflection of an incident shock wave from a flat end face is studied. It is found that the gas piles up at the cold wall, which slows down the shock wave detachment. The numerical results are in qualitative agreement with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call