Abstract

The flow of the BauerGarabedianKorn (BGK) No. 1 supercritical airfoil is investigated by the solution of the unsteady Reynolds-averagedNavierStokes equations with a two-equation lagged kωturbulent model.Two steady cases (M=0.71, α=1.396 deg and M=0.71, α=9.0 deg) and one unsteady case (M=0.71, α=6.97 deg), all with a far-stream Reynolds number of 20106, are computed. The results are compared with available experimental data. The computed shock motion and the evolution of the concomitant flow separation are examined. Space-time correlations of the unsteady pressure field are used to calculate the time for pressure waves to travel downstream within the separated region from the shock wave to the airfoil trailing edge and then back from the trailing edge to the shock outside the separated region. The reduced frequency so calculated agrees well with the computed buffet frequency, supporting the signal propagation mechanism for buffet proposed by Lee (Lee, B. H. K., Oscillation Shock Motion Caused by Transonic Shock Boundary-Layer Interaction, AIAA Journal, Vol. 28, No. 5, 1990, pp. 942944).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.