Abstract

In the present work, a three-dimensional suspended sediment model (SED) is built. A three-dimensional hydrodynamic model (COHERENS) and a third-generation wave model (SWAN) are fully coupled through accounting for mutual influences between wave and current in them. SED is combined with the coupled model built up above. Damping function of suspended sediment on turbulence is introduced into COHERENS. Then a coupled hydrodynamic–sediment model COHERENS-SED incorporating mutual influences between wave and current is obtained. COHERENS-SED is adopted to simulate three-dimensional suspended sediment transport of Yellow River Delta with wave–current co-existing. The simulated tidal current velocities and suspended sediment concentration match well with field measurement data. The simulated significant wave height and wave period for a case with current's effects can give better agreement with measurement data than a case without current's effects. Numerical simulation results of COHERENS-SED are demonstrated to be reasonable though being compared with previous studies and field measurements [Wang, H., Yang, Z.S., Li, R., Zhang, J., Chang, R., 2001. Numerical modeling of the seabed morphology of the subaqueous Yellow River Delta. International Journal of Sediment Research 16(4), 486–498; Wang, H., 2002. 3-dimensional numerical simulation on the suspended sediment transport from the Huanghe to the Sea. Ph.D. Thesis, Ocean University of China, pp. 12–14 (in Chinese)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.