Abstract

The study of column dynamics in high-rise buildings is a subject of interest for building engineers because of their safety implications. In this study, a numerical analysis is performed using Fire Dynamics Simulator considering the temperature, velocity, and pressure of vertically rising smoke in buildings of various sizes as a function of fire size. The numerical analysis results were analyzed and verified for confined and open systems. The results of this study show that as the building area decreased and the fire size increased, the buoyancy flow accelerated, and the total building temperature rose. The lower pressure of the building floor due to the smoke's buoyancy increased the vertical pressure gradient throughout the building. These findings can be used by design engineers to develop design safety guidelines. Keywords: Fire Dynamics Simulator, Buoyant Smoke Dynamics, High-rise Buildings, Wall Effects

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.