Abstract

The most attractive merit of tunneling carbon nanotube field effect transistors (T-CNFETs) is the ultra-small inverse sub-threshold slope. In order to obtain as small an average sub-threshold slope as possible, several effective approaches have been proposed based on a numerical insight into the working mechanism of T-CNFETs: tuning the doping level of source/drain leads, minimizing the quantum capacitance value via tuning the bias condition or increasing the insulator capacitance, and adopting a staircase doping strategy in the drain lead. Non-equilibrium Green's function based simulation results show that all these approaches can contribute to a smaller average inverse sub-threshold slope, which is quite desirable in high-frequency or low-power applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.