Abstract

The effects of material properties and specimen geometric factors on stress transfer across the fibre-matrix interface in the fibre push-out test are evaluated based on an axisymmetric boundary element analysis. It is shown that the Young's modulus ratio of fibre to matrix, the effective fibre volume fraction, the specimen thickness and the support hole size influence significantly the overall interface stress profiles and the maximum stress values at free edges. The first two material parameters, in particular, dictate where the maximum interface shear stress occurs between the loaded and supported fibre ends. The implication is that under certain circumstances the interface debond may initiate from the supported fibre end, as opposed to the usual loaded end debonding, if assuming the maximum interface shear stress criterion. A similar two-way debond phenomenon is predicted using a shear lag analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.