Abstract

The purpose of this work is to study three different models of delamination in composite plate (the free mode model, the constrained model and the contact model) and applicability of this models to the vibrational method of damage detection based on frequency shifts. The results of numerical simulation have shown that the free mode model leads to abrupt changes in natural frequencies due to non-physical condition of mutual penetration of adjacent volumes in the defect zone. The constrained and the contact models yield qualitative agreement in shifts of natural frequencies with a change of the defect size. All models have shown the necessity of analyzing shifts of high frequencies to detect small size delamination.

Highlights

  • The estimation of the mechanical state of a structure during its operation based on detection of internal damages has gained a great importance for such rapidly developing fields of production as mechanical engineering, aerospace industry, etc., whose recent trends are toward an increased use of new types of materials

  • The most widely spread type of defects in composite constructions is delamination, which leads to a separation of the object in the defect zone into several parts, which begin to respond to loads independently of each other [1] while the stiffness of each part is significantly lower than the stiffness of the whole object

  • The change of eigenfrequencies, depending on the size of delamination in the range of 0-20 kHz, is shown in Fig. 3 and 4

Read more

Summary

Introduction

The estimation of the mechanical state of a structure during its operation based on detection of internal damages has gained a great importance for such rapidly developing fields of production as mechanical engineering, aerospace industry, etc., whose recent trends are toward an increased use of new types of materials. It is well known that the appearance of defects in a particular place of the structure influences the local stiffness in this zone, which leads to a shift of natural frequencies. This specific feature of structure response is behind the global vibrational methods of damage detection. These methods use different dynamic parameters (eigenfrequencies, mode shapes, curvatures of mode shapes, etc.) to evaluate the state of the investigated structure [2,3,4,5]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.