Abstract

Considering the shear-thinning feature of blood viscosity, the characteristics of non-Newtonian fluids are important in pulsatile blood flows. Stenosis, with an abnormal narrowing of the vessel, blocks blood flow to downstream tissues and leads to plaque rupture. In smaller arteries of diameters up to a few hundred micrometers, such stenosis can result in severe consequences. Therefore, a systematic analysis of the blood flow around the stenosed microchannel is important. In this study, non-Newtonian behaviors of the blood flow around a microchannel of diameter 500 μm, with 60% severe stenosis, were examined using CFX under pulsatile flow condition, with a period of 1 s and Reynolds number of 14.025 at the systolic phase. The viscosity information of the two non-Newtonian samples and the used pulsatile profile were based on our previous study. For comparison, water at room temperature was used as the Newtonian fluid. During the pulsatile phase, wall shear stress (WSS) is highly oscillated. In the case of the water flow, the recirculation occurred downstream the stenosis. This recirculation made the vortex structures travel the longest and induced a low WSS distribution and rapid normalized pressure drop at downstream of the stenosis. Conversely, the non-Newtonian feature of viscosity made flow structures almost symmetric, with respect to the stenosis. However, the highly oscillating WSS enhances the tendency of plaque instability and damage to the endothelium. Our findings on the influence of blood viscosity on stenotic lesions may help clinicians understand relevant mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call