Abstract
By using a two-dimensional fully nonlinear compressible atmospheric dynamic numerical model, the propagation of a small amplitude gravity wave packet is simulated. A corresponding linear model is also developed for comparison. In an isothermal atmosphere, the simulations show that the nonlinear effects impacting on the propagation of a small amplitude gravity wave are negligible. In the nonisothermal atmosphere, however, the nonlinear effects are remarkable. They act to slow markedly down the propagation velocity of wave energy and therefore reduce the growth ratio of the wave amplitude with time. But the energy is still conserved. A proof of this is provided by the observations in the middle atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.