Abstract

Discrete element method (DEM) simulations of binary mixing of particles with different densities were conducted to study the influence of density ratio, blade speed, and filling level on the particle dynamics and mixing performance in a bladed mixer. Four particles with different densities at different locations were tagged to discuss the influence of three factors on the particle trajectory and velocity field in the mixer. A method based on cubic polynomial fitting of relative standard deviation was used to determine the critical revolution during the mixing process. It was found that the non-dimensional tangential velocity decreases with the increase of the blade speed and filling level, the fluctuation of vertical velocity increases with the radial location, blade speed, and filling level, and it is more pronounced than the fluctuation of tangential and radial velocity during the mixing process. Results obtained indicate that the mixing performance of particles with different density increases with the decrease of density ratio and filling level, while it increases with the increase of blade speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.