Abstract
The substrate melting can significantly improve the properties of plasma spray coatings. Indeed the adhesion of the projected particles to the substrate can be ameliorated by the substrate melting. In this article, a numerical model is developed to study the dynamics of fluids and heat transfer with liquid/solid phase change during impact of a fully melted alumina particle on an aluminum solid substrate, taking into account of the substrate melting. The model is based on solving the Navier-Stokes and energy equations with liquid / solid phase change. These equations are coupled with the fluid of volume method (VOF), to follow the free surface of the particle during its spreading and solidification. The finite volume method is used to discretize the equations in a 2D axisymmetric domain. A comparison with the published experimental results was carried out to validate this numerical model. Simulations were performed for different initial droplet diameters to study its effect on droplet spreading as well as on substrate melting. It has been observed that the substrate melting begins before the droplet spreads completely; the substrate melting reaches its maximum when the droplet is close to its total solidification. Droplet spreading and substrate melting are more important for large sizes droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.