Abstract

In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we present non-ideal axisymmetric magnetohydrodynamic simulations of the nonlinear evolution of MRI in the experimental geometry. The simulations adopt fully insulating boundary conditions. No-slip conditions are imposed at the cylinders. A clear linear phase is observed with reduced linear growth rate. MRI results in an inflowing jet near the midplane and enhances the angular momentum transport at saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.