Abstract
Quantifying the oscillation amplitude of thermoacoustic instabilities remains a critical and challenging issue, as it is a complex balance between driving and damping processes. The New Pressurized Coupled Cavities (NPCCs) setup designed for the study of acoustic damping is analyzed in this work. It is a cold-flow test rig mimicking the geometry of a liquid rocket engine and equipped with an acoustic forcing device. The chamber 1T mode triggers a strong non-linear harmonic response, while the 1T1L and 1T2L exhibit weak non-linearities. Disturbance energy budgets are used in large-eddy simulations to characterize the damping phenomena with the 1T2L and 1T1L forcing. The correct global damping of the system is retrieved, and local damping contributions are extracted. Then, a non-linear term representing the energy transfer to the harmonics is derived from non-linear acoustics theory. Combined with a linear model, this model correctly retrieves the limit-cycle of the 1T mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Spray and Combustion Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.