Abstract
We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j=12 spins are replaced by nonmagnetic ions in the honeycomb layer. Next, we investigate the low-energy excitations of the 1D Kitaev-Heisenberg model by calculating the dynamical spin structure factor using the Lanczos exact-diagonalization method. In the vicinity of Kitaev limit, there exist two well-separated dispersions. The bandwidth of each dispersion depends on the Heisenberg and Kitaev terms. This result may be relevant to the low-lying magnetic excitations of K0.5RuClm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.