Abstract

The adsorption of weak polybase on oppositely charged planar surfaces has been investigated numerically by using the self-consistent field theory (SCFT). Particular attention was paid to the interplay of monomer-surface electrostatic and non-electrostatic interactions in the adsorption behaviors of weak polybase. In this study, the strength of monomer-surface non-electrostatic interactions was set to be no more than the thermal energy kBT. It was found from the numerical study that in the regime of low surface charge density of the substrate and low pH or high bulk degree of ionization, both the screening-enhanced and screening-reduced salt effects emerge. On the contrary, in the opposite regime, only the screening-reduced salt effect was observed. Moreover, the overall charge neutrality inside the adsorption layer was analyzed. The underlying mechanism governing the adsorption behaviors of weak polybase on oppositely charged surfaces was elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.