Abstract
In this study, fluid flow and heat transfer in microchannel heat sinks are numerically investigated. The three-dimensional governing equations for both fluid flow and heat transfer are solved using the finite-volume scheme. The computational domain is taken as the entire heat sink including the inlet/outlet ports, inlet/outlet plenums, and microchannels. The particular focus of this study is the inlet/outlet arrangement effects on the fluid flow and heat transfer inside the heat sinks. The microchannel heat sinks with various inlet/outlet arrangements are investigated in this study. All of the geometric dimensions of these heat sinks are the same except the inlet/outlet locations. Because of the difference in inlet/outlet arrangements, the resultant flow fields and temperature distributions inside these heat sinks are also different under a given pressure drop across the heat sink. Using the averaged velocities and fluid temperatures in each channel to quantify the fluid flow and temperature maldistributions, it is found that better uniformities in velocity and temperature can be found in the heat sinks having coolant supply and collection vertically via inlet/outlet ports opened on the heat sink cover plate. Using the thermal resistance, overall heat transfer coefficient and pressure drop coefficient to quantify the heat sink performance, it is also found these heat sinks have better performance among the heat sinks studied. Based on the results from this study, it is suggested that better heat sink performance can be achieved when the coolant is supplied and collected vertically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.