Abstract

Typhoon Chan-Hom (2015) underwent a weakening in the tropical western North Pacific (WNP) when it interacted with a monsoon gyre, but all operational forecasts failed to predict this intensity change. A recent observational study indicated that it resulted from its interaction with a monsoon gyre on the 15-30-day timescale. In this study, the results of two numerical experiments are presented to investigate the influence of the monsoon gyre on the intensity changes of Typhoon Chan-Hom (2015). The control experiment captures the main observed features of the weakening process of Chan-Hom (2015) during a sharp northward turn in the Philippine Sea, including the enlargement of the eye size, the development of strong convection on the eastern side of the monsoon gyre, and the corresponding strong outer inflow. The sensitivity experiment suggests that intensity changes of Chan-Hom (2015) were mainly associated with its interaction with the monsoon gyre. When Chan-Hom (2015) initially moved westward in the eastern part of the monsoon gyre, the monsoon gyre enhanced the inertial stability for the intensification of the typhoon. With its coalescence with the monsoon gyre, the development of the strong convection on the eastern side of the monsoon gyre prevented moisture and mass entering the inner core of Chan-Hom (2015), resulting in the collapse of the eyewall. Thus, the weakening happened in the deep tropical WNP region. The numerical simulations confirm the important effects of the interaction between tropical cyclones and monsoon gyres on tropical cyclone intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call