Abstract
AbstractA numerical study of an oil–water Taylor flow is presented in this paper to explore its flow and heat transfer characteristics. Due to the large surface area to volume ratio in narrow channels, using slug flows, high heat and mass transfer rates could be achieved. Sound knowledge of the underlying physics of slug flow is required for the practical design of microfluidic devices. In this study, hydrodynamics and heat transfer characteristics of dispersed oil droplets flowing inside a vertically upward circular microchannel (D = 0.1 mm) with water being the carrier phase have been explored numerically. ANSYS Fluent was employed to capture the liquid–liquid interface using volume of fluid method. Two different boundary conditions were considered in the present study. First, an isothermal wall of 373 K and later a constant wall heat flux (420 kW/m2) were, respectively, prescribed over the wall of the microchannel. The numerical code was validated against the results available in the literature, and the significant results in the form of pressure drop and heat transfer rates have been discussed. A considerable increase in Nusselt number, up to 180% and 210%, was observed with the oil–water slug flow in contrast to the liquid‐only single‐phase flow inside the microchannel for isothermal and constant wall heat flux conditions, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.