Abstract
A novel mesoscopic simulation technique--multi-particle collision dynamics--which has been suggested very recently, is used to study the two-dimensional flow around a square and a circular cylinder. The method is described and new proper boundary conditions are proposed to deal with wall collisions. The flow is analyzed in a wide range of Reynolds numbers in order to cover both the steady and unsteady regimes, resulting in symmetric steady vortices and periodic vortex shedding, respectively. The numerical results for integral flow parameters, such as the recirculation length, the drag and lift coefficients, the Strouhal number, as well as the spatial dependence of the velocity field, are compared with previous numerical and experimental studies. The qualitative and quantitative agreement is very good, validating the method as a promising technique to describe the hydrodynamic effects of solvent on embedded particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.