Abstract

This article examines the influence of centrifugal buoyancy on the hydrodynamic and thermal behaviour in fully developed flow through an orthogonally rotating duct of aspect ratio 2:1. A series of computations have been performed at rotation numbers ranging from 0 to 0.2, for constant‐density flows (no buoyancy) and also for different levels of outward and inward buoyancy. The resulting comparisons reveal that for a Reynolds number of 32,500, rotational buoyancy effects become significant at Rayleigh number values greater than 107. In outward flows, buoyancy is found to strengthen the effects of the Coriolis force on the mean motion and, by raising turbulence levels, buoyancy also enhances wall heat transfer along both the pressure and the suction side of the rotating duct. In inward flows, it is found that strong buoyancy can reverse the direction of the Coriolis‐induced secondary motion, which causes a strong rise in wall heat transfer along the suction side and a similarly significant fall in heat transfer along the pressure side. The computed effects on heat transfer are in qualitative agreement with the findings of a number of experimental studies. For both inward and outward flows, at a constant Reynolds number, the modifications of centrifugal buoyancy on the side‐averaged levels of heat transfer correlate reasonably well with the rotational Rayleigh number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.