Abstract

Hydrodynamic Ram (HRAM) is a phenomenon that occurs when a high-energy object penetrates a fluid-filled container. The projectile transfers its momentum and kinetic energy through the fluid to the surrounding structure increasing the risk of catastrophic failure and excessive structural damage. In this work a numerical study of the influence of metallic plates, inside a fluid-filled aluminium tube, in the attenuation of the HRAM phenomenon effects is performed. The numerical results regarding walls displacement and pressure inside the tank will be compared with a case in which there are no barriers inside the tube. The simulations are performed with the software LS-DYNA applying the ALE technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.