Abstract
Heat pumps, which enable the cooling and heating of vehicular cabins, consume a significant portion of the total energy consumption in electric vehicles (EVs). The efficiency of the heat pump is typically degraded owing to cold-weather conditions, so the refrigerant-injection technique has been proposed for improving the system performance and compressor reliability. In this study, a simulation model for an R134a heat pump with vapor injection is developed and validated by performing thermodynamic analyses with geometrical information. The effects of the injection-port design are investigated using the developed numerical model. Single-injection and dual-injection ports are considered to optimize the coefficient of performance (COP) and isentropic efficiency by controlling the injection mass flow rate. The optimal angles of the single- and dual-injection ports are determined to be 440° and 535°/355° (for pocket A/B), respectively, while the corresponding COPs are improved by 7.5% and 9.8%, respectively, compared to the non-injection heat pump at an outdoor temperature of −10°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.