Abstract

Abstract. A series of model sensitivity experiments was designed to explore the effects of different initial conditions and emissions in Xi'an in December 2016; Xi'an is a major city in the Fenwei Plain, which is a key area with respect to air pollution control in China. Three methods were applied for the initial condition tests: a clean initial simulation, a restart simulation, and a continuous simulation. In the clean initial simulation test, the C00, C06, C12, C18, and C24 sensitivity experiments were conducted to explore the effect of the intercepted time periods used. The results of these experiments showed that the fine particulate matter (PM2.5) model performance was better when the start time of the intercepted time periods was delayed. For experiments C00 to C24, the absolute mean bias (MB) decreased from 51.07 to 3.72 µg m−3, and the index of agreement (IOA) increased from 0.49 to 0.86, which illustrates that the model performance of C24 is much better than that of C00. The R1120 and R1124 sensitivity experiments were used to explore the restart simulation and, in turn, the effect of the date of the first day of the model simulation. While the start times of the simulations were different, the simulation results with different start times were nearly consistent after a spin-up time period, and the results revealed that the spin-up time was approximately 27 h. For the continuous simulation test, the CT12 and CT24 sensitivity experiments were conducted. The start times of the intercepted time periods for CT12 and R1120 were the same, and the simulation results were almost identical. Based on the simulation results, CT24 showed the best performance of all of the sensitivity experiments, with the correlation coefficient (R), MB, and IOA reaching 0.81, 6.29 µg m−3, and 0.90 respectively. For the emission tests, an updated local emission inventory with construction fugitive dust emissions was added and was compared with the simulation results from the original emission inventory. The simulation with the updated local emissions showed much better performance for PM2.5 modelling. Therefore, combining the CT24 method and the updated local emission inventory can satisfactorily improve the PM2.5 model performance in Xi'an: the absolute MB decreased from 35.16 to 6.29 µg m−3, and the IOA reached 0.90.

Highlights

  • In recent years, severe air pollution has gradually become a major challenge in China and other developing countries (Wu et al, 2014; X. Li et al, 2017)

  • Three methods were applied for the initial condition tests: using the clean initial condition files as a clean initial simulation, using the restart files as a restart simulation, and a continuous simulation

  • We collected the observations in December 2016 and evaluated the model performance and improvement

Read more

Summary

Introduction

Severe air pollution has gradually become a major challenge in China and other developing countries (Wu et al, 2014; X. Li et al, 2017). Severe air pollution has gradually become a major challenge in China and other developing countries China released a 3-year action plan for cleaner air in 2018, with efforts focused on areas including the Beijing–Tianjin–Hebei region, the Yangtze River Delta, and the Fenwei Plain. As a major city of the Fenwei Plain area, Xi’an is located in the Guanzhong Basin. The city is surrounded by the Qinling Mountains to the south, and the Loess Plateau extends to the north and west, which is not conducive to the dispersion of air pollutants. Xi’an has suffered severe air pollution in recent years because of its particular topography and rapid economic development (Zhang et al, 2002; Cao et al, 2012). Xi’an is undergoing rapid development including urban construction activities that cause large construction fugitive dust emissions (Long et al, 2016)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call