Abstract

The problem of controlling a liquid drop suspended in an arbitrary two-dimensional elongational flow with vorticity is revisited. Bentley and Leal (J Fluid Mech 137:219–240, 1986) kept the drop centroid at the stagnation point using a linear proportional control strategy in a four-roll-mill apparatus that projects the drop’s motion onto the stable flow direction of the stagnation point. A nonlinear strategy based on the Poincare–Bendixson theory to ensure a periodic motion of the drop centroid inside a prescribed area around the stagnation point is proposed and studied. In addition, a detailed numerical study is presented to illustrate the effect of the control on the drop motion. The present strategy is effective, allowing for deformation and changes in the drop orientation by less than 1% for extreme flow conditions that cannot be achieved by a four-roll-mill setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.