Abstract

The interfacial instability of two-phase immiscible fluids in inclined tubes at constant temperature boundary conditions is numerically investigated by the front-tracking method. By analyzing the effects of inclination angle φ, Marangoni number (Ma), and Rayleigh number (Ra) on the interfacial instability, the interaction law between unstable interface fluctuation and heat transfer is studied. The results show that the larger the inclination angle, the easier the interface is destabilized, and the heat transfer at the interface will also decrease. In the comparison of inclination angles of 0°, 30°, 45°, and 60°, the heat transfer is more stable at 45°. The heat flux between fluids decreases with the increase of Ma number, and Ma number has little effect on the interfacial fluctuation. It mainly affects the interfacial morphology by changing the surface tension gradient at the interface, which is mainly reflected in the end of the convolution interface. The larger the Ma number, the more inward the interface develops. Ra number has an obvious inhibitory effect on the interfacial instability. The effect of Ra number on heat-flow transfer at the interface shows alternating changes. In the initial stage, the heat transfer between fluids in the inclined tube is greater than that in the horizontal tube, but in the later stage, the heat transfer is less than that in the horizontal tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call