Abstract
A mathematical model based on the fluid approach is developed to study the capacitively coupled radiofrequency discharges at low pressure. This model allows us to obtain the electron heating profiles under the effects of applied voltage and pressure after 3000 radiofrequency cycles. These informations are very useful to understand the plasma processes used for etching or for the deposition of thin films to manufacture capacitors or micro coils. The results showed an increase whether for the pressure heating or for the ohmic heating when the applied voltage increases from 150 to 220 V. Finally, the results also showed that pressure heating and ohmic heating exist simultaneously and increase rapidly with the increase of the pressure which has similar effect to the applied voltage on the electron heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.