Abstract

Despite the widespread use of reverse total shoulder arthroplasty, there is still a problem of conflict between the polyethylene cup of the prosthesis and the scapula, which over time causes the phenomenon of notching. In order to circumvent this problem correctly, several innovations have been proposed regard to the implementation method. In this context, the aim of this work is to study the biomechanical behavior of new implantation methods using different glenoid configurations in order to avoid the notching phenomenon between the cup and the scapula. The study was performed using virtual prototypes of the shoulder prosthesis assembly. Using CT scan images, three-dimensional models of shoulder bones were reconstructed. The implantation of the prosthesis in the three-dimensional model was performed in collaboration with an experienced surgeon from the Caduceus Clinic (Oran, Algeria). The numerical models were imported to finite element calculation software. After the validation of the numerical model using the literature results, we assessed the biomechanical behavior of four implantation methods under the same boundary conditions and abduction movements. From the obtained results, it was found that among the proposed methods, the BIO-SR lateralization method offers significant biomechanical advantages in terms of the forces applied to the glenoid during the abduction movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.