Abstract

Starting from the Boltzmann equation and with some reasonable assumptions, a one-dimensional transport equation of charged energetic particles is derived by taking account of major interactions with neutral species in the upper atmosphere, including the processes of elastic scattering, the excitation, the ionization and the secondary electron production. The transport equation is numerically solved, for a simplified atmosphere consisting only of nitrogen molecules (N2), to obtain the variations of incident electron fluxes as a function of altitude, energy and pitch angle. The model results can describe fairly the transport characteristics of precipitating auroral electron spectra in the polar upper atmosphere; meanwhile the N2 ionization rates calculated from the modeled differential flux spectra also exhibit good agreements with existing empirical models in terms of several key parameters. Taking the energy flux spectra of precipitating electrons observed by FAST satellite flying over EISCAT site on May 15, 1997 as model inputs, the model-calculated ionization rate profile of neutral atmosphere consists reasonably with that reconstructed from electron density measurements by the radar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call