Abstract

Asphalt concrete (AC) is a composite material consisting of binder, aggregates and air voids. The quantitative effect of aggregate-to-aggregate contact on the mechanical performance of AC is an important and complex issue, which has not been fully understood yet. To fill this gap, this study aims to characterize the aggregate contacts in AC and evaluate their effects on the viscoelastic behavior of AC through micromechanical finite element (FE) modeling. To this end, 3D microstructural models were generated through digital image processing (DIP) method and aggregate contacts were captured in the model via contact zone (CZ) elements. A CZ model was proposed and verified by a parametric study to identify the viscoelastic properties of CZ elements, while the viscoelastic properties of matrix phase were determined through laboratory tests. Steady-state dynamic (SSD) analysis was then conducted to investigate the macro-scale viscoelastic response of AC. It was found that the proposed modeling approach captures the measured response accurately. Accounting for aggregate contacts results in higher predicted AC dynamic moduli and lower phase angles, thus improving the agreement between modeling and experimental results. The numerical model developed in this study provides a promising approach for investigating the effect of aggregate contacts on the mechanical performance of AC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.