Abstract
The Vishniac instability is supposed to explain the fragmentation of the thin shell of shocked matter in the radiative phase of supernova remnants. However its implication and its consequence on the morphological evolution of stellar systems is not fully demonstrated. The present paper tackles this subject by numerical simulations and focus on the role of the adiabatic index in the instability growth. The HYDRO-MUSCL 2D hydrodynamics code has been used to simulate the evolution of a supernova remnant thin shell and the triggering of the Vishniac instability in this thin shell. We have studied the temporal behavior of the perturbation. The first result of the numerical study is the existence of the Vishniac instability in the simulations. This result is proved by the overstability process observed in the simulations as predicted by the theoretical analysis. The second important result is the damping of the perturbation at late evolution and for all the set of parameters. Indeed the accretion of matter onto the shock damps the instability when theoretical analysis predicts its occurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.