Abstract

In this paper, we consider the inverse one-phase one-dimensional Stefan problem to study the thermal processes with phase change in a moving boundary problem and calculate the temperature distribution in the given domain, as well as approximate the temperature and the heat flux on a boundary of the region. For this problem, the location of the moving boundary and temperature distribution on this curve are available as the extra specifications. First, we use the Landau’s transformation to get a rectangular domain and then apply the Crank–Nicolson finite-difference scheme to discretize the time dimension and reduce the problem to a linear system of differential equations. Next, we employ the radial basis function collocation technique to approximate the spatial unknown function and its derivatives at each time level. Finally, the linear systems of algebraic equations constructed in this way are solved using the LU factorization method. To show the numerical convergence and stability of the proposed method, we solve two benchmark examples when the boundary data are exact or contaminated with additive noises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.