Abstract

This study investigates the Taylor–Couette flow (TCF) with a longitudinal corrugated surface on a stationary outer cylinder and a rotating smooth inner cylinder using large eddy simulation for three values of amplitude to wavelength ratios (A*) (0.1875, 0.2149, and 0.25) to explore the influence of the corrugated surface on the flow structures and the variation of torque for a wider range of Reynolds numbers (Re) (60–650). From the results, four flow regimes are observed. At Re = 60, initially, a pair of secondary vortices appears at the inner wall of the minimum gap region and it evolves to a pair of axisymmetric stationary wall induced vortices (ASSWIVs) in the maximum gap region. As Re increases to 80, 85, and 103 for the three values of A* (0.1875, 0.2149, and 0.25), respectively, another pair of axisymmetric stationary secondary vortices is seen at the minimum gap region of the inner wall. A further increase in Re (Re > 125, 130, and 138 for the three values of A*, respectively) results in the appearance of axisymmetric periodic secondary axial flow. Increasing Re further (Re > 225, 240, and 260 for A* = 0.25, 0.2149, and 0.1875, respectively) leads to the emergence of non-axisymmetric and non-periodic secondary axial flow (NANPSAF) with an azimuthal wave. Generally, the torque in TCF with the corrugated surface is found to be lower than TCF with a smooth surface except for the occurrence of the ASSWIV flow regime and weak axial secondary flow in the NANPSAF regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.